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A general framework using density matrices is developed for the analysis of atomic
excitation by spin-polarized electrons. This framework is applied to the specific case
of the 3S,,, — 3 B, transition in Na, as studied by the time-reversed, superelastic process.
The scattering is characterized in terms of physical parameters describing the collisionally
excited p-state, i.e., its angular momentum (L,), linear polarization (B,,), and alignment
angle (y), with these parameters defined separately for singlet and triplet excitation. An
expression for the scattering intensity is derived which is valid for arbitrary electron
polarization and atomic state preparation. Specific examples are discussed with a view
toward complete determination of the relevant scattering amplitudes and phases. Recent
experimental results are reevaluated for comparison with theoretical calculations, and

suggestions are made for future experiments.

PACS: 34.80.Nz; 34.80.Qb

1. Introduction

Our understanding of electron impact excitation of
atoms has substantially matured during recent years.
In addition to providing reliable total and differential
cross section data for a large variety of atoms, soph-
isticated experimental techniques are now available
for revealing highly instructive details of the collision-
al process. These include the shape and the inherent
angular momentum of the excited atoms after the ex-
citation process, measured as a function of incident
electron kinetic energy and scattering angle. In recent
years a wealth of data has been obtained in these
so-called collisional alignment and orientation stud-
ies, notably for ns -» n’ p transitions [1]. Such informa-
tion may be obtained by detecting the scattered elec-
tron at a well defined scattering angle and energy

* Research supported in part by the U.S. Department of Energy.
Office of Basic Energy Sciences, Division of Chemical Physics
**  Joint Institute for Laboratory Astrophysics, University of Col-
orado and National Bureau of Standards, Boulder, CO 80309, USA
Permanent Address: Fakultdt fir Physik, Universitéit Freiburg, Her-
mann Herderstrasse 3, D-7800 Freiburg, Federal Republic of Ger-
many

(thereby defining a scattering plane) and in coinci-
dence with it the photon reemitted from the excited
atom [2], whereby the polarization and/or angular
distribution of the photon provides the information
on the magnetic substate population of the collision-
ally excited atom. Alternatively, one may study the
reverse process, #'p—ns, via superelastic scattering,
i.e. prepare an excited atomic target in a well defined
mixture of n’ p substates by laser optical pumping and
observe the differential electron scattering signal for
the deexcitation of this atom as a function of the po-
larization of the exciting laser [3]. In both cases the
same information on the relevant scattering ampli-
tudes for the ns<>n'p transition is determined and
may be compared with advanced theoretical compu-
tations of these parameters.

In spite of the significant progress made during
the last years, and sometimes good to excellent agree-
ment between theory and experiment, these studies
do reveal a great deal of shortcomings in essentially
all the current theories at intermediate energies and
larger scattering angles. This situation exists even for
seemingly the most simple model cases such as elec-
tron impact excitation of helium and atomic hydro-
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gen [4, 5]. In fact a comparison of experimental and
theoretical alignment and orientation parameters, at
say 50 eV, leaves us with an almost arbitrary choice
of an appropriate theory for scattering angles beyond
90°. It has been argued that this might indicate a
general inadequacy of the theoretical approaches in
treating a significant contribution of the interaction
such as the exchange part of the scattering process.
It is obvious that such a shortcoming would deserve
the highest attention. Even though the alignment and
orientation parameters have been called esoteric [5],
they are an excellent tool to amplify specific problems
in the theory of electron scattering. Thus they can
often lead the way to a greater reliability and general
applicability of such calculations to the less esoteric
and more integrated quantities such as the differential
cross section where one cannot be content with the
present state of affairs [5].

Traditionally, the role of electron exchange is clar-
ified by measurements with spin-polarized electrons
and spin-polarized targets, perhaps employing spin
analysis after the collision process [6, 7]. This ap-
proach has seen some success in elastic scattering,
to the point that one was able to speak about the
“perfect” scattering experiment [8], implying that all
theoretically calculable amplitudes could, in principle,
be determined by the experiment. However, when Be-
derson first introduced this concept, it was highly
questionable whether one might apply it ever to the
inelastic processes as well, since that necessitates the
simultaneous application of electron spin selective
techniques and the alignment and orientation mea-
surements described above. Since then, vast improve-
ments of the experimental methods in preparing spin-
polarized electrons have made such experiments feasi-
ble and the first successful differential electron impact
excitation study with spin-polarized electrons and
alignment and orientation analysis was performed by
Kessler, Hanne and collaborators [9] for the e—Hg
case at forward scattering, a rather complex situation
since both electron exchange and spin-orbit interac-
tion are of importance there. A first study with spin
analysis after collision from laser excited Na was dem-
onstrated even earlier by Hanne et al. [10], but only
most recently a series of first systematic studies for
the superelastic scattering of polarized electrons from
laser excited Na (32 P) atoms was reported by McClel-
land et al. [11, 12]. This system may still be consid-
ered a relatively simple model case, being essentially
a two electron system, in which spin exchange is the
dominant spin dependent interaction which enters
into the dynamics of the collision process. Thus the
information on alignment and orientation parame-
ters, separated into direct and exchange contribu-
tions, seems accessible now and one wants to under-
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stand how to make best use of these extraordinary
possibilities.

It is the aim of the present paper to provide the
general theoretical framework for analyzing experi-
mental studies of superelastic (or inelastic) np —»n's
transitions induced by spin-polarized electrons in
laser excited atoms and to illustrate the results with
published experimental data. The same analysis
would then apply to the reverse process, i.e. the study
of an ns— n'p transition in an electron-photon coinci-
dence experiment with analysis of the electron and
photon polarization.

The following criteria will guide our analysis:

a) We want to evaluate the experimental data in
terms of a set of instructive parameters which can
be compared with theoretical results, if possible, in
such a way that the role of exchange and direct scat-
tering can be separated.

b) We want to disentangle dynamic parameters
which describe the collision process from geometrical
factors which describe a specific experimental situa-
tion. This approach is obviously much more funda-
mental than merely comparing theoretical results to
sets of experimental data for a specific geometry.

c) We want to describe the parameters which can
be measured in principle and the most appropriate
experimental conditions for the determination of
these parameters.

d) The framework to be provided should be con-
nected with the language presently used in alignment
and orientation studies without spin analysis and
should easily lend itself to be expanded for more com-
plex cases.

We will restrict ourselves here to light atoms
where the spin-orbit interaction can be neglected.
Furthermore, rather than describing a general atom
and arbitrary transition we will be guided by the actu-
al experimental example

Na(®*Py, F=3)+e” >Na(32S,,)+e” +2.1eV (1)

for which detailed studies with unpolarized electrons
are available [13, 14] and which now [11, 12] has
been studied by scattering electrons of a well known
spin polarization.

The formalism for achieving the above specified
goals will be derived by following the spirit of Fano
and Macek [15] who developed the necessary frame-
work for analyzing alignment and orientation coinci-
dence studies without spin analysis and which later
on was applied to scattering from laser excited atoms
{16], again without spin analysis. Advantages and
disadvantages of the various sets of parameters for
describing standard orientation and alighment studies
have been discussed on various occasions [17-19],
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and we consider most useful and instructive a set of
parameters which directly describes the shape and an-
gular momentum of the atomic p-type charge cloud
after the ns—n'p collisional excitation process, the
time reverse of the system actually studied in the ex-
periment under discussion.

This set of parameters, as specified in [19], con-
sists of L,, the angular momentum transferred per-
pendicular to the scattering plane, y, the alignment
angle of the charge cloud, and B, the so-called linear
polarization of the charge cloud, i.e. the relative differ-
ence between its length and width in the scattering
plane. These quantities relate in a very simple way
to the density matrix describing the collisionally ex-
cited atom in a coordinate frame whose z-axis is per-
pendicular to the collision plane, the so-called natural
frame, in contrast to the usually adopted collision
frame whose axis is parallel to the incoming electron
beam.

It will be shown in the present work that, with
the inclusion of electron spin-polarization, one can
introduce and experimentally determine analogous
quantities independently for singlet and triplet scat-
tering. Two additional quantities will be introduced,
namely the ratio of cross sections for singlet and trip-
let scattering, and a phase difference between single
and triplet amplitudes. The cross-section ratio is mea-
surable in the types of studies discussed here, but the
singlet-triplet phase difference would require as well
the determination of the electron (and/or atom) spin-
polarization after scattering. We will also see that not
all of the parameters introduced are independent.

The paper will be structured as follows. We will
first discuss briefly, in Sect. 2, the density matrix for-
malism as it is to be applied to this type of study.
In Sect. 3 we will introduce the scattering matrix and
the parameters used for describing the collisionally
excited atom in an ns-» n'p transition, and more spe-
cifically for an experiment with electron spin analysis
(Sect. 3a). Then we derive the preparation matrix of
the collisional system (electron plus p-atomic target)
as determined by the optical pumping and spin selec-
tion process which occur prior to the actual collision
studied (Sect. 3b). Combination of the state prepara-
tion and scattering matrices gives the very instructive
Eq. (24) for the scattering intensity in the general case.
One must be aware, however, that the scattering ma-
trix and the preparation matrix are generally derived
in different coordinate frames, and that one must
therefore perform an appropriate frame rotation
(Sect. 3¢). We do this, in the Appendix, with an irre-
ducible representation of the preparation matrix in
terms of real multipole moments. By using standard
tensor algebra and the Wigner-Eckart theorem this
allows us at the same time to project these quantities
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from the hyperfine coupling scheme |(JI) FMp), in
which the atom is prepared by optical pumping, onto
the |(LS) JM,) fine-structure coupling scheme, in
which the density matrix is needed for describing the
present scattering data. We then discuss, in Sect. 4,
some specific examples of experimental geometry and
derive formulae to evaluate the scattering signals in
terms of the dynamical parameters introduced above
(Sects. 4a—d). As a further topic we address relations
among the different matrix elements and parameters
and discuss the number of measurements necessary
to completely characterize the 3P —3S transition
under study (Sect. 4¢). We then present, in Sect. 5,
a detailed evaluation of the previously published ex-
perimental data [11-13]. Measurements with circu-
larly polarized optical pumping are compared (Sect.
5a) to theoretical results from the literature, namely
the 4-state close-coupling calculations of Moores and
Norcross [20] and the distorted wave results of Ken-
nedy et al. [21]. As will be seen, the overall agreement
between theory and experiment is good only for the
lowest energies, while some interesting disagreements
are found at relatively higher energies (~10.0 eV).
Significant conclusions may be drawn individually for
the singlet and triplet scattering channels. Some inter-
esting geometrical implications are then discussed in
context with the interpretation of measurements with
linearly polarized light (Sect. 5b).

2. General Theory of Measurement

In the most general case of state-selected scattering
experiments, state selection can be either complete,
partial, or nonexistent in any of the available scatter-
ing channels. To allow for all of these possibilities,
the connection between theory and experiment is
most conveniently made in the density matrix formal-
ism. The intensity of particles with a specific incident
energy scattered into scattering angle 6,.,, is given
by [22-25]

I=n % N, Tr(c*'Fo**F"). )
1
In this expression, the constant n contains all purely
experimental factors such as target and projectile den-
sities, detection efficiencies, etc. The initial and scat-
tered projectile momenta are given by k; and k., re-
spectively. The density matrices 6%°* and 6P describe
the state selection in the detection and preparation
processes, respectively, and are assumed normalized
such that each has unit trace. The total number of
final states detected in the experiment is given by N,
and appears in (2) to compensate for the normaliza-
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tion of ¢%'. All scattering information about transi-

tions from any initial state |i) to any final state |1
of the system is contained in the transition matrix
F, whose elements are the complex scattering ampli-
tudes /;;(0,..) obtained, e.g., from ab initio calcula-
tions.

The great advantage of (2) for expressing the scat-
tering intensity is that it separates clearly the various
factors which determine the outcome of any measure-
ment, and hence allows one to use a “divide and con-
quer” approach in the analysis of a rather complex
problem. In particular, the contribution from scatter-
ing dynamics is contained entirely within F, while the
details of the initial state preparation or final state
detection are contained entirely within 69 or &?"®,
respectively. Thus, one can treat each of these contri-
butions independently of the others, in whatever man-
ner is most convenient or appropriate. In addition,
careful inspection of the expressions can indicate
which specific measurements must be performed to
investigate specific aspects of the transition matrix.

The measurements which stimulated the present
work utilized preparation of the initial states (spin
and/or orbital angular momentum) of each incident
particle, but did not include analysis of the final states
[11, 12]. Thus we concentrate at present on extending
previous treatments of (2) to include explicitly the ef-
fects of electron spin exchange in scattering processes
that include spin analysis of both collision partners
prior to the collision. This allows us to write

1
a“e‘=N— 1, after which (2) simplifies to

!
I=C Tr(Fo™*F")=C Tr(¢*"*F'F)
=C Tr(e®*?p), (3)
where the constant C is the product of the experimen-
tal efficiency #, and the flux factor % We have also

defined the matrix p=F'F with elements given by
pii' = Z/f*l (Oscat)/fi’ (Gscat)' (4)
S

In the remainder of this paper, we refer to this matrix
p as the “scattering matrix”.

This scattering matrix p is N;x N; Hermitian,
where N; is the number of possible initial states. Be-
cause it involves a sum over final states of the system,
some information about the scattering will be hidden
to the experiment. Even so, we shall see that signifi-
cantly more information is retained than is available
in conventional cross section measurements not utiliz-
ing state selection.

While the remainder of this paper treats specifi-
cally experiments which employ state selection before
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but not after the interaction, the approach used is
completely valid for treating experiments which use
state analysis after the interaction but not before. The
crucial point is that one of the state density matrices,
either preparation or detection, should be proportion-
al to the unit matrix, so that one need treat only
the matrix product of the transition matrix and its
adjoint. It should be noted, in fact, that the scattering
matrix derived from (3) is precisely the scattering ma-
trix one would use in the time-reversed experiment,
ie. inelastic coincidence measurements in which one
does no preparation of the initial ground states, but
does detect the spin of the scattered electron and/or
the state of the excited atom.

Some treatments of this inelastic process have
used a different normalization for the scattering ma-
trix, requiring that it have unit trace [13, 17, 19].
We have chosen for reasons of clarity in several ex-
pressions to be derived, however, to normalize such
that the trace is proportional to the spin averaged

d
differential scattering cross section, il , for the
aQl.ys
forward scattering process i — f. Specifically,
ki do|
Tr(p)=Qo(95cm)=k—f Nioo . (%)

Throughout the remainder of this paper, Q, will be
used to denote this angle dependent normalization®.
The degeneracy factors are N;=3-4=12 and N,=4
for the case under study with three degenerate 3p
orbitals and four possible states for the two incident
electron spins.

3. Theory of Spin-Polarized Superelastic Scattering
from Na(3* P, ;)

The expression (3) for the scattering intensity is the
central relation of the rest of this paper, in which
we will be discussing its explicit evaluation for the
case of spin-polarized electron scattering from opti-
cally pumped Na(3%P,,). A key step in the explicit
evaluation of (3) is the choice of coordinate system
and basis states with which to represent the matrices

! Note that this normalization is independent of whether one is
describing an np —n's transition superelastically, or an ns—n'p
transition inelastically. We have defined everything in terms of the
actual initial and final states. While the inelastic differential cross
section differs from the superelastic cross section, due to the flux
and degeneracy factor, the normalization of the scattering matrix,
Qo, is exactly the same in each case. With this normalization, the
scattering matrix is analogous to a “differential collision strength”
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6 and p. While this choice is in a sense arbitrary,
a judicious choice at the outset reduces both the com-
plexity of the resulting expressions and the work in-
volved in generating them. Furthermore, it can make
explicitly clear the connection between various theo-
retically calculable and experimentally observable
quantities. To this end, we first choose to derive ex-
pressions for ¢ and p in different basis sets, each of
which is chosen according to its appropriateness for
the matrix in question. Then, for evaluation of the
experimental intensity, each matrix is re-expressed in
terms of a third, common, set of basis states. This
third set is chosen both to minimize the complexity
of the transformation from each of the original basis
sets, and also to express most simply the experimental
conditions. While this approach may seem at first
glance unduly involved, it will be seen that it is the
“path of least resistance”, in that the expressions so
derived are relatively simple and accurately reproduce
the symmetries inherent in the physics of the scatter-
ing process.

3a. The Scattering Matrix

We begin by writing an expression for the scattering
matrix in its most appropriate basis. For the present
work we are specifically interested in limiting our in-
vestigations to the role played by spin exchange in
low energy collisions with light atoms. Within this
limitation, we can make several reasonable assump-
tions about the scattering dynamics which greatly re-
duce the complexity of theoretical expressions. First,
we assume that the nonzero nuclear spin plays no
dynamic role during the relatively short duration of
the collision. Further, we assume that the spins of
both the scattered and atomic electrons remain un-
coupled from the atomic orbital angular momentum
during the collision, but couple to each other to form
a composite spin & These together comprise the Per-
cival-Seaton hypothesis [26], and allow us to com-
pletely describe the effect of the nuclear spin through
angular momentum recoupling coefficients. Finally,
we choose to neglect the continuum spin-orbit inter-
action so that & and .#, are conserved during the
collision. For a light target such as sodium, this is
a good approximation. Thus we see that a reasonable
choice for describing the relevant quantum states of
the system is the basis set [LM; &.# >, because in
this basis set, the scattering matrix is diagonal in &%
and ,. We therefore introduce scattering sub-ma-
trices, s and t, for scattering via the singlet and triplet
spin states respectively. These are each 3 x 3 matrices
with rows and columns for M; = 41, 0. The scattering
matrix p can then be written as
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; (6)

S OO -
S O = O
S = O O
nw O O O

where the rows and columns are labeled by (L M)
=(11), (10), (1-1), and (00).

We now need to consider the elements of the indi-
vidual matrices t and s. Owing to the overall positive
reflection symmetry about the scattering plane, angu-
lar momentum can be transferred only perpendicular
to that plane. Consequently, if the quantization axis
is chosen normal to the scattering plane, the matrics
t and s take on particularly simple forms, i.e.

tiy 0ty
t={ 0 0 0 (7a)
t.1p 0 t-14

and

Si1 0 sy
s={ 0 0 0 . (7b)
S—ir 0 soq

One should note that it is only in such a “natural
frame™ [17] that the scattering matrices take on this
simple form. Often, however, scattering amplitudes
are given in the so-called “collision frame” in which
the z-axis is along the incident electron direction. In
such case, one must reexpress those amplitudes in
the natural frame prior to use in (7a-b) [17, 18].

It is essential to specify very carefully what frame
is chosen as the “natural frame”. A reasonable con-
vention would be to choose the #-axis parallel to the
projectile’s (classical) angular momentum, with the &
and § axes fixed relative to the incoming direction.
Specifically, 2,,,=k;, x k.., and &, =K,, would seem
to be the most appropriate choice for the coordinate
system. We make at present, however, an alternative
choice for the “natural frame” in order to emphasize
the connection between the superelastic experiments
under consideration and the time-reversed, inelastic
coincidence studies of the same transition. In particu-
lar, we choose 2,,,= —(k;, x ko) and f,,,= —K,,,.
This is precisely the choice of the “natural frame”
for the time-reversed process.

With this choice of coordinate system, the scatter-
ing amplitudes, #;;(0;.,,), for collisional deexcitation
from state |i) to state |f)> are merely the complex
conjugates of the scattering amplitudes, f; (0yc.), for
collisional excitation from state |f) to state |i>. Conse-
quently, the scattering matrix of (4) is precisely the
same for either type of experiment. The matrices s
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and t can thus be compared directly with the scatter-
ing matrix previously used to describe inelastic experi-
ments using unpolarized electrons [13, 17, 19]. That
matrix, p, ..o, i given by

1+L, 0 —Bye 2V
punpol =% O Poo 0 (8)
—B.e?" 0 1-L,

and is related to our present scattering matrix by
L T 9
=— 17T
punpol QO ot p ( )

where Tr indicates summation over the singlet and
s, t

triplet parts in (6). Thus the matrix elements of p,,;0
are (3ta, ey +Sary m3)/ Qo

The four parameters L, , By, y and p,, take their
significance from the inelastic ns — n'p transition. L;
is the angular momentum transferred to the atom
along 2,,,, i.c., perpendicular to the scattering plane.
B, is the linear polarization of the charge cloud of
the excited p-state; that is, its length minus its width
divided by the sum of the two. The angle y is the
alignment angle in the scattering plane of the axis
of the charge cloud with respect to the incident elec-
tron direction. The parameter p,,, Which describes
the “height” of the charge cloud along £,,,, vanishes,
in the absence of the spin orbit interaction, for a
np«—n's transition.

The net effect of introducing spin polarization to
the initial state preparation is to double the number
of parameters needed to describe the scattering. We
therefore introduce, analogously to the spin unpolar-
ized case, the quantities ¥, L,, Bf,, Bi., ¥, and y*
with which to characterize the singlet and triplet scat-
tering matrices. These matrices can then be expressed
by

1+, 0 —RLe

s=303% 0 0 0 , (10a)
- 1isnGZiys 0 1-I

1+LtJ. 0 _R:ne_zw
t=305% 0 0 0 . (10b)
—Be? 0 1-I

2 Had we strictly adhered to our definition above of the “natural
frame”, the coordinate system would have had its 2-axis in the
opposite direction and its -axis would have been rotated though
an angle n—0,,, about the 2-axis. In that frame, the amplitudes,
74 1(0sea), for collisional deexcitation would have had an additional
phase factor, due to the coordinate rotation. Consequently, the off-
diagonal elements of the scattering matrices t and s would have
also had an additional phase factor
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Here we have introduced Qf and Qf which are pro-
portional to the isotropic part of the partial differen-
tial cross section for singlet and triplet scattering, re-
spectively. We note that

Qo=Tr(p)=3Tr()+Tr(s)=3Q6+ Q%
=3+ -1 )+ +s-1-1)=0CBr+1)Q%

3r+1
—" (1

where we have defined the cross section ratio, r, as

_%
Q0
At this point we note that while the scattering

matrix is particularly simple when represented in the
|LM, &% .# ) basis, a closer connection to possible
experiments is achieved if one uncouples the electron
and atoms spins and represents the scattering matrix
in the |LM; SMgsm,) basis. That is because experi-
mentally one cannot uniquely prepare the singlet or
triplet spin states, but one can prepare the spins ini-
tially to be either parallel or anti-parallel. The ele-
ments of the scattering matrix in the |LM; SMgsm,)
representation are related to those in the
|LM, & # &) representation by

r

(12)

pMs m, Msmj
= Z SMssmy|S ML MNSMsSMD poyy, v es
LM
(13)

where we have made use of the fact that p is diagonal
in ¥ and 4 .

The final form for the scattering matrix p is then
given by

0 0
3(t+s) 3(t—s)
3(t—s)" 1(t+s)

0 0

; (14)

S O O =
- O O O

where the rows and columns are labeled by (Mg, m,)

=43, G, -, (-1 1, and (-4, ).
3b. Preparation Matrix

We now turn our attention to derivation of the matrix
6""°? which describes the initial state preparation. We
note the preparation matrix must encompass the
preparation not only of the atom, but also of the
incident electron, since it is polarized prior to col-
lision. Because the electron and atom are considered
to be separate systems before the collision, we may




LV. Hertel et al.: Analysis of Collisional Alignment and Orientation

write the combined density matrix as the direct prod-
uct of individual matrices, 6! and 6™, for the elec-
tron and atom respectively:

oPreP — o.atom®o.el‘ (15)

The electron spin density matrix is given by [7]

1 l(l-f-Pz

: B+iF,
(5 ) o

1-F

where B, F, and P, are the three components of the
electron polarization vector. This electron polariza-
tion is expressed in the natural frame to maintain
correspondence with the collision matrix derived in
the previous section.

The atomic preparation matrix 6P is obtained
by careful consideration of the optical pumping used
to create the atomic excited state. The atom is pre-
pared in a distribution of magnetic sublevels of a sin-
gle hyperfine state by laser optical pumping. The opti-
cal pumping is best described in a coordinate system
called the “photon frame” [27, 3]. For pumping with
circularly polarized light, this frame has the 2 quanti-
zation axis parallel to the propagation direction of
the laser. For linearly polarized light, the electric vec-
tor of the light determines the z-axis. In the photon
frame, the atomic density matrix, expressed in terms
of the F-coupled states of the free atom, is a diagonal
matrix when linearly of circularly polarized light is
used [27].

What is needed for use with the scattering matrix
derived in the previous section is the atomic density
matrix in the natural frame expressed in terms of the
|ILM SMg) representation. Transformation of the di-
agonal density matrix into this form involves three
steps. First we project the F-coupled density matrix
onto the J-coupled basis states, then rotate the matrix
from the photon frame into the natural frame, and
finally recouple into the |LM; SMg)> representation
{27]. Each of these operations can be performed rela-
tively simply using the moments of a multipole expan-
sion of the density matrix [3, 4]. These moments
transform in a simple way under coordinate rotations,
and the details of the transformations are included
in the Appendix. Here we take as a starting point
the atomic density matrix in the natural frame in the
[JM ;> representation, with the matrix elements ex-
pressed in terms of optical pumping parameters deter-
mined in the photon frame. The resulting 6 x 6 matrix
has rows and columns labeled by (JM)=3,3), 3,)),
3, —3), G, —3), 3, %), and (3, —3). The explicit evalua-
tion of the 6,4, ; u;, in terms of the photon frame
optical pumping parameters is included in the Appen-
dix.
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In the previous section, the scattering matrix was
finally expressed in the uncoupled |LM,; SMg sm,> ba-
sis set. Thus we must derive an expression for the
preparation matrix in this representation in terms of
the elements o543 .5, in the |JM,) representation.
In the new representation, the matrix elements are
given by

Y (LM, SMg|IM,>

IMyJ' My

o_atom —
My Ms, Mg Ms—

"My LMy SMg) 65573 5 v, (170)
=(LM SMg|J(M_+ Mg)>

(LM SMg|J (M +Mg)>

" O5 Mz + M), (M + M) (17b)

where in the second step we have made use of the
selection rules for Clebsch-Gordan coefficients and
the fact that, since only a single fine structure level
is optically excited, J=J'.

This 6 x 6 matrix o3 ", ay a 1S re-expressed in
terms of a 2 x 2 matrix whose elements are each 3 x 3
submatrices. That is,

++ + -

d“‘°’“=(a_+ "__) (18)

[ c

with rows and columns labeled by + and — for
M= +14, —14, respectively. Each of the sub-matrices
in (18) has rows and columns labeled by M; = +1,
0, — 1. Thus, we have, for example

6" Doy = O My, My 4 CIC. (19

The four sub-matrices evaluate to

o= ]ﬁ%% %%% ‘?%—% » (202)
%%% ”13/“2"—%-% 9-3 -
1 2
3% )/3% 4 9
6" "= ") = Vf%; %%—; ]/%%—;
%0—%.% ?0—5,—; %0—5,—%
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and finally,
1 2
~SOL 1 VUL 1 ’1—0'1 3
3 22 3 7z 37272
- 2 2 )2
[ = K 11 — 11 I 1 _3
3 0_5'3 30_5‘ 2 3 a_i’_i
1
~O0_31 [E -3 _1 g_3 _3
3 202 3 272 2072

(20¢)

The electron spin polarization properties of the
atomic density matrix in (18) are made clearer if we
rewrite the matrix, in analogy with (16), as

(60 +o.z) (o'x+io'y)
atom: 1
7 7((ax—iay) (ao—az)) @D
with the definitions
oo=(6""+67"), (22a)
6,=(6""+a*"), (22b)
6,=i(l6""—6""), (22¢)
6,=(c""—06"") (224)

The matrices 6, 6,, and ¢, are 3 x 3 matrices describ-
ing spin polarization of the atom along the %, §, and
2 axes, respectively. The matrix o, describes the spin-
unpolarized part of the density matrix.

Combining (16) and (21), and keeping in mind the
definitions from (20a—c), we finally obtain the prepa-
ration matrix, in the uncoupled basis, in a form which
can be used directly with the scattering matrix from
(14):

oy

(60 + o-z) (ax + io.y) (1 + Pz) (Rc + le)
(o'x - io'y) (60 - az)) ( )

(B—iE) (1-E)
(23)

It should be noted that this form of the density matrix,
a**°? could equally well describe the density matrix,
6%, which describes an inelastic coincidence experi-
ment employing spin-polarization analysis of the scat-
tered electron.

3c¢. Scattering Intensity
The results of Sects 3a and 3b for the collision and

preparation matrices, (14) and (23), allow us to expli-
citly evaluate (3), which gives the scattering intensity.
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We obtain

I =§[Tr [6o(3t+8)]+ P, Trlo,(t—s)]
+ B Tro,(t—s)1+ B Tr[e,(t—s)]]. (24)

Equation (24) contains the basic information
needed to make decisions about how best to prepare
the atom and electron in order to extract the maxi-
mum information about the matrices t and s. From
the first term, we see that with unpolarized electrons,
we obtain information about the matrix sum (3t+s).
The addition of electron spin-polarization allows us
to determine the matrix difference (t—s) as well.

The goal is then to determine what optical pump-
ing schemes produce preparation matrices which have
diagonal and/or off-diagonal terms so that all ele-
ments of the matrices (3t+s) and (t—s) can be probed.
For the sum, this has essentially been done in previous
unpolarized superelastic scattering work by pumping
with clockwise and counter-clockwise circularly po-
larized light, and also with linearly polarized light
{3, 4, 13, 17]. For the difference, a spin-polarized ex-
periment is required in order to determine the matrix
elements. We note that spin-polarization along any
one axis, e.g. the 2-axis, is sufficient to extract all the
information, since the same difference, t—s, appears
in each term. The combination of spin-polarized and
unpolarized measurements then gives complete infor-
mation on the individual singlet and triplet contribu-
tions to the scattering, with the exception that nothing
is learned about the relative phase between singlet
and triplet scattering.

In the remainder of this paper, we will concentrate
on obtaining explicit expressions for the matrices o,
6., 6, and ¢, for various specific optical pumping
configurations. For use in the following sections, we
write down general expressions for these matrices in
terms of the optical pumping parameters and the po-
lar angles 6 and ¢ defining the direction of 2,00
with respect to the natural frame (see Fig. 8 in the
Appendix). The parameters o, (orientation), a, (align-
ment) and e, (octopole moment) are defined in the
Appendix, and are the only three parameters neces-
sary to describe the atom if pure linear or circular
polarization is used. In order to obtain the expres-
sions shown below, we have first combined (A7a—c)
and (A 10a—c) from the Appendix to get natural frame
real multipole moments. Then we have used (A 6a—j)
to get expressions for oy, ,, Which are subsequently
inserted into (20, 22) to obtain the results for o4, o,
6,, and o,. In the interest of simplicity, we have omit-
ted the rows and columns corresponding to M, =0
because they are all zero. We thus obtain
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ao=%(1+0° cos 0+ 15a0(3 cos? 0—1) Lg, sin® fe =219 5
C.C. 1—04 cos 0+ 15a4(3 cos? 6—1) (25a)
cos ¢ [30o+3a, cos 8 eo[ysin2 e 3%
sin 0 +35€0(5 cos? 0—1)] g5(1—5cos? @) e17]
M +0p k6710 : (25b)
CC. cos ¢ [20o—%ay cos
35€0(5 cos? 6—1)]
sin[§0o+3aocos0+  —ieg[{ysin? fe~ 30—
36€0(5 cos? 0—1)] g5(1—5cos? §) e 1v]
sin § ; .
ay: 3 +§00 < ¢ s (250)
C.C sin ¢ [20,—4%a, cos 0+
35€0(5 cos? —1)]
$+%00 cos 0+%ao(3 cos? 6—1) $eo sin® 0 cos G e~ 2i¢
+30€0(5 cos® 8—3 cos §
o,=1 30¢0( ) | 54

—3+%0,cos—2ay(3 cos*0—1)

C.C +35e0(5 cos® 0—3 cos 0)

4. Some Examples of Specific Optical Pumping
Arrangements

We now turn to a discussion of some specific cases.
We will be guided both by specific geometries for
which data exists and by the desire to determine what
geometries are required to effect complete determina-
tion of the scattering matrices.

4a. No Orientation, Alignment or Octopole Moment

While this situation is generally difficult to achieve
experimentally, since light propagating uniaxially will
usually induce at least some degree of alignment, it
may be very nearly achieved under high density beam
conditions. At sufficiently high density (>10'% cm™3),
radiation trapping would tend to redistribute the ra-
diation isotropically, generating the desired isotropic
excitation. With o, =a,=e,=0, the matrices in (25a—
c) take on the very simple form

1 0

7=4(y 1) (262)
1 0

o=ty 1) (6b)

g,=0,=0. (26c¢)

The interesting point here is that despite the fact that
there is no orientation, alignment or octopole mo-
ment, there is still the possibility of a spin-dependent
effect since 6,+0. Using (24), the scattering intensity
can now be written in terms of the elements of the
scattering matrices s and t as

C

1:1—2—{3(t11+t_1—1)+(s11 +5-1-1)

P
+?z[(t11_t—l—l)—(sll_s-l—l)]}' (27)

This intensity will be different depending on whether
the incident electron spin is “up” (B=+|R|) or

“down” (B,=—|B|). One can thus construct a spin
asymmetry from (27) as
1 I1(N)—1I
_ L Im-1Q) o8)

CIBRIIM+IAY

where the arrows refer to spin “up” (1) or “down”
(1). We get

:1 (1=t —(11—5-1-1)
23 Hto ) (S Fso1o1)

(29)

This spin asymmetry is what has been referred to
as the “fine-structure” effect [10, 28, 29]. It arises
solely because the atom has been prepared in a single
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fine-structure state and because the singlet and triplet
scattering intensities differ. It has nothing to do with
spin-orbit coupling between the incident electron’s
spin and its angular momentum (which, after all is
completely neglected in the present treatment), despite
the fact that it occurs in a completely unpolarized
atom.

4b. Circularly Polarized Pumping
with Light Propagating
Perpendicular to the Scattering Plane

Our next case is still relatively simple, and is of imme-
diate interest because of the experiments recently con-
ducted in this geometry (see Sect. 5). We have 2,00
=%.a1, 50 the polar angles 6 and ¢ are both equal
to zero. Inserting these values into (25a—d) yields

1+00+a0/6 0

-1

60_3( 0 1—00+a0/6)’ (302)

6. =1 3+200+3a0+15€0 0

=3 0 —2+%00—3%a0+1se0)
(30b)

6,=0,=0. (30¢)

Now we can put in the stationary pumping values
00=13/2, ap,=3 and ey=+9/2 given in (A8a—c),
where the + and — signs correspond respectively
to positive (right-handed, RHC) and negative (left-
handed, LHC) helicity for the circularly polarized
light propagating in the +2,,, direction. This gives
the simple result

e} 9. ot
o.RHO=(y ) (31b)
-0 9 oo
w.uHO=(; ) G1d)

Since 6,=0,=0 in this case, we see that F, is the
only component of the incident electron spin which
can provide new information. Furthermore, since the
off-diagonals of o, and e, are all zero, it is clear that
nothing can be deduced from this experiment about
the off-diagonals of the singlet and triplet matrices
s and t.

Using (31a—d) in (24), we can write explicit expres-
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sions for the scattering intensity in terms of elements
of the scattering matrices s and t as in the previous
section:

P=SI6+B) i+ (1= B)sy,] (324)
P=CI0-B) U4 R) s, (32b)

where R and L refer respectively to plus and minus
helicity of the light. If one does an experiment in
which scattering is measured with electrons polarized
either in the +2,, or —2,, direction, (32a-b) can
be inverted to extract four experimental quantities
which are proportional to the scattering matrix ele-
ments:

1/ 1 1
== Rt _{ = 1) yR!
T, > L(lgl +1)I (|P| 1)1 ]octu, (33a)

SN E PRI 2 W
(33d)

Here, we have added to the intensity I the superscripts
T to indicate scattering with electrons polarized in
the +12,,, direction (B = +|B)), and | with electrons
polarized in the —2,,, direction (B.= —|B)).

Because of difficulties associated with the absolute
measurements necessary to extract the scattering ma-
trix elements directly, it is worthwhile to define rela-
tive quantities which, together with one absolute mea-
surement of the spin and orientation averaged differ-
ential cross section, are sufficient to completely deter-
mine the scattering matrices. Such relative quantities
are more conveniently determined experimentally and
also have more physical significance. As in the case
of scattering with unpolarized electrons, we can ex-
tract the angular momentum transferred to the atom
in the collision, but this time we generate two quanti-
ties (see (10a-b)), one for singlet, I, and one for
triplet, I, . They are given by

_T11_T—1—1:t11_t—1—1
T +T -y i+t

L, (34a)

S11_S—1—1_311—S—1—1

L= = .
TS HS_ o sutsoioy

(34b)
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The ratio, r, between singlet and triplet contributions

to the scattering intensity (see (12)) is given by

rZ(T11+T—1—1)= (ty1+t1-y)
(S11+S-1-1) (s11ts-1-1)

(35)

These three parameters contain all the information
one can obtain from the relative measurements of the
four quantities IR, I®¢, 11, and I,

4c. Linearly Polarized Pumping
with Light Propagating
Perpendicular to the Scattering Plane

This case is of interest first, because experiments have
been conducted in this geometry [11], and second
because it is an experimentally accessible example of
a spin-dependence in the scattering of polarized elec-
trons from an atom whose electron is not spin-polar-
ized. For this example, 2., lies in the scattering

plane, so the polar angle 8 takes the value ; The

azimuthal angle ¢ is the angle between %,, and the
electric vector of the light, measured in a positive
sense about 2,,,,. The only optical pumping parameter
is ay, which has the value —2. Using (25a-d), we
obtain

1/ 73 —e 2
"0“6(—e2w 773 W) (362)
51 O
"FE(o _1), (36b)
6,=a,=0. (36¢)

Comparing these matrices to those in Sect. 4a, where
the situation with no orientation, alignment or octo-
pole moment was considered, one sees a remarkable
similarity, especially in ¢,. This matrix has exactly
the same form as before, the only difference being
that it is multiplied by a different constant. Thus we
should expect the spin-dependent part of the scatter-
ing intensity to have much the same behavior. The
matrix ¢, has diagonal elements similar to those in
the previous case, but it also has nonzero off-diagonal
elements. These off-diagonal elements indicate that
now the scattering intensity (see (8, 10a—b)) is sensitive
to the off-diagonal element — B;, ¢~ *'7 in the matrix
sum (3t+s). Hence one might be able to probe these
by varying the angle ¢. We note, however, that since
the off-diagonals occur in 6, and not in 6, one ob-
tains no new information on the scattering matrix
off-diagonals by spin-polarizing the incident elec-
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trons. The ¢-dependence in the intensity is exactly
the same as is observed in an unpolarized experiment.

Let us write the intensity down in explicit form
as

C )
I=7~2—Q0{7—3[(3t1_1+Sl_1)e2””+C.C.]
+S5B(t —to i Ht —to -1} (37

where to obtain this result we have used (36a-b) in
(24) and the normalization of (11). The expression
for the intensity (37) can be rewritten in terms of pre-
viously determined experimental quantities in the
form

C
I=»7~2-Q0{7+3Ri,, cos2(p—v)+SP AL}, (38)

where AL, is a “weighted difference” between the
triplet and singlet contributions to L,. In terms of
the three relative quantities measured in the circular
polarization experiment described in Sect. 4b. AL,
can be expressed as

AL =(t11—t_1_1)—(s11—s_1_1)=
+ 0o 3r+1

(L, L))

(39)
where (11.34a-b) have been used.
In order to make the connection with the experi-
ment of reference [11], we construct, as in (28), a
spin asymmetry given by

_ SAL,
"~ 7+3R, cos2(p—y)’

A (40)

Thus we see that although this experiment is an inter-
esting example of the “fine-structure effect™ [10, 28,
291, it provides no new information about the matri-
ces t and s that could not be obtained from experi-
ments with unpolarized electrons combined with po-
larized-electron experiments with circularly polarized
optical pumping. Nevertheless, taking B;,, y and AL,
from previous measurements, one can use (40) to pre-
dict a spin asymmetry with well-defined ¢-depen-
dence. This can then be measured to verify the under-
lying assumptions of the approach outlined in this
paper. More discussion of this will be presented in
Sect. 5. ‘

4d. Circularly Polarized Pumping
with Arbitrary Angle of Incidence

In the previous sections we have seen that it is possi-
ble to measure If,, I}, and r with polarized electrons
and circularly polarized pumping, and B;, and y with
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unpolarized electrons and linearly polarized pumping.
However, complete characterization of the matrices
t and s requires more information, namely separate
determinations of Ef,, Bf,, " and y*. Clearly, in order
to achieve this one must find an optical pumping
scheme in which e, (or o, or ¢,) has off-diagonal ele-
ments. Then the scattering intensity will contain a
term proportional to (¢, _, —s, _,), which, in combi-
nation with the information on (3ty_1+s,_;) ob-
tained with unpolarized electrons, can be used to ex-
tract the necessary information. An angular variable
in the off-diagonal of o, will also be useful, as this
makes possible the extraction of the phase angles P
and y°.

Using again electron spin polarization perpendic-
ular to the scattering plane, exploiting o, we see from
(25d) that the first important criterion is that we
create an atom with an octopole moment e, If we
restrict ourselves to pure polarization, either circular
or linear, it is clear that we must choose circular po-
larization, since linear polarization produces only an
alignment a,.

Next we must ensure that the choice of photon
frame does not make the off-diagonals in ¢, vanish
as it did in Sect.4b. For example, one might let
6=54.74°, the “magic angle” of photoelectron spec-
troscopy, which maximizes the product sin? 6 cos 0,
creating the largest possible off-diagonal element.
Then, using the stationary optical pumping values
for 04, ay, and e,, 64 becomes

(2; 1{5 2";/2) @1)

while the matrix g, evaluates to
1 (1/512 ie“z“f’)
6 1/3 T g2ie _ l/g +2

(in each dual sign, the upper sign is for RHC light
and the lower sign is for LHC light). The matrices
6, and a, are no longer zero, but they can be ignored
if we restrict ourselves to incident electrons polarized
along 2,,,. As in the previous section, we can write
down the intensity using (24). From this, we can con-
struct a spin asymmetry, as defined in (28). After some
algebra, one obtains
r—1 .
1 ]/gALli2§~r+—l$Dun cos 2(p—9)
A=—v- . 43)
]/5 2—PB,, cos2((p——y)i]/§ALl

3 Note that terms which contain octopole moments are typical for
the optical pumping approach to the scattering process. In contrast,
electron-photon coincidence experiments for the inverse process
would only provide multipole moments up to rank 2 [15] in the
a9, 6y, d,, and 6, matrices and the presently discussed setup would
not provide any new information

=

Oy =

G,

(42)
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Here we have introduced the new quantities Dy;,, and
26 as the magnitude and phase of the normalized

off-diagonal element (¢, ., —s,_,)/Q,, in analogy to
B, and 2v:

_lDr e-—zi,s___(tl—l—sl—l)

2 Qo

Presuming that practical considerations do not in-
terfere, this, then, is one possible approach towards
measurement of all possible information about the
matrices t and s. One might consider an experiment
in which the spin asymmetry is measured while ¢
is varied. Then, since all parameters in (43) are avail-
able from other measurements except Dy, and 24,
these two could be extracted. Knowing these as well
as By, and 2y, which give the magnitude and phase
of the sum (3¢, _ +s; _ ), then allows complete deter-
mination of the magnitude and phase of t,_, and
5y -1 separately (see Sect. 4e).

An alternative and sometimes more practical ap-
proach would be to use a spin polarization vector
P,=(P, F,,0) in the &,,,— §,... scattering plane and cir-
cularly polarized light propagating parallel to P,. To
obtain that geometry experimentally from the setup
discussed in Sect. 4b, one might, for example, simply
rotate the electron detector plane through 90°, leaving
the incident electron beam direction, spin polarization
and direction of the light propagation unchanged.
Then the matrices 6, and ¢, become important be-
cause their off-diagonal elements contain both octo-
pole moments and orientation* With cos =0,
B.=1|P,| cos ¢, and F,= +|P,| sin ¢, we note, with-
out going into detail, that rather simple expressions
for the spin asymmetry arise. They contain again D,
and 6. A measurement with (RHC) ad (LHC) light
would allow us to determine these quantities.

The approaches suggested here are by no means
the only possibilities to obtain information about the
off diagonal elements. As can be seen from (25d), there
are many optical pumping configurations which lead
to a nonzero off-diagonal in o¢,, though some may
experimentally be more accessible than others. In ad-
dition, if one is willing to consider ellipitically polar-
ized light, then the possibilities become even more
varied. However, one is forced to use a more compli-
cated expression for o, since (25d) is no longer valid.
If the optical pumping can be properly controlled and
completely analyzed, this may indeed be a more ap-
propriate way to approach the problem, but a very
careful analysis would have to be carried out before
such an experiment were attempted.

(44)

* Thus, this approach would be applicable to electron-photon coin-
cidence experiments as well
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4e. Relations Between the Matrix Elements

Assume we have determined by studies with circularly
polarized light and spin polarization the quantities
I, and I, and the cross section ratio r as described
in the preceding section, and have determined by
some means Dy;, and J as well. Assume also that B,,
and vy are known from studies using linearly polarized
excitation, but without spin polarization. It is then
possible to determine, in the same normalization, all
matrix elements of the triplet and singlet scattering
matrices s and t. From the definitions (10-12, 44) we
obtain for the four real diagonal elements

tiy 1 r

e (R (45a)
t'Qlo“‘ —% (3;«: 0L (45b)
Sé_; =%( r1+1)(1+L) (45¢)
e (RN @sa)

and for the complex off-diagonal elements we have

ty- - ~2i —2i
-1 —iB e 2= (B, e 27+ Dy, €7 2Y),
Q0

(46a)
Sq- i i i
Bl RS e 2= (R e 27 —3Dy, 6”2,

0
(46b)

Up to now we have discussed the evaluation pro-
cedure as if all these matrix elements were completely
independent. In that way these relations may be used
even for more complex cases than the np<«>n's transi-
tion which is our primary concern at present.’ For
an np<n's transition the situation simplifies in as
far as there are only four complex amplitudes, one
set for triplet and one set for singlet scattering, fy
and f3;.

The relative phases of these four amplitudes are
more clearly seen if the amplitudes are expressed as
If% | exp(i¢y,) and |f3,| exp(i¢’ ). As the overall
phase is arbitrary and unobservable, we factor out
and ignore a common average phase of }(¢)+ ¢,
+¢5+¢° ) from cach amplitude. One is left with
three relative phases, which we take to be first, a rela-
tive phase between singlet and triplet scattering, de-
fined as

5 Note, however, that for transitions other than p«s, the assump-
tion poo=0 has dropped so that the analysis becomes somewhat
more involved, even though straightforward
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28" =4(d1+ 1) — 3y + 4% 1)

and next, two relative phases between +1 and —1
amplitudes, defined as

:¢SI—¢S—19
=¢ — 9",

We note that since the singlet-triplet relative phase,
6, will appear in none of the scattering matrices here
derived, it cannot be determined in this type of experi-
ment. Spin analysis of the electron (and/or atom)
would additionally be required to study this relative
phase.

With these definitions, we write the four ampli-
tudes as

47a)

(47b)
47¢)

Sii=fi4l i@t =), (482)
fi1=Lfi1|ei(_auﬁt), (48b)
and the matrix elements of t and s as
i1 =|f1t|2a (493)
14 =|.fil|2a (49b)
S11 =Ij'1s|2’ (49¢)
So1-1=U%41% (49d)
and
tioy = L=l e” Y = = ff IfL ] e 72,
(50a)
Sio1 =SS =R e = U e
(50Db)

We note that the alignment angles, y* and y’, of the
collisionally excited atom are very closely related to
relative phases between the +1 and —1 scattering
amplitudes. In fact, the phase differences, 6° and &°
merely define the alignment of the minor axis, rather
than the major axis, of the collisionally excited charge
cloud. For consistency with previous work, we will
henceforth use the alignment angles for the major
axes, y* and y’, to characterize the phase of the off-
diagonal elements.

We see from (47a-b) that the off-diagonal ele-
ments of t and s are already known in magnitude
if the diagonal terms are available. Thus we are left
with the task to determine the phase angles y* and
* (as defined in (10a-b, 50a-b)), while the linear po-
larization parameters for singlet and triplet scattering
may be derived from the diagonal matrix elements,
i.e., from studies with spin polarization and circularly
polarized light (see (45a—d)):

(51a)

: —23r+1|/t11t_1_1 1— (E )2

lin




—
Re¢

Fig. 1. Graphic representation of (52) in the complex plane. The
two terms on the right-hand side of the equation are represented
by the vectors {* and {*, and the left-hand side is represented by
the vector {. Note that if [{|, y, |{*| and || are known, there are
two ways in which the vectors {* and { can add to yield ¢, as
illustrated by the solid and dashed vectors. Thus two sets of values
for y° and y* are possible, given the information at hand

l;n=2(3r+1)_51—‘0%“1‘—‘=]/1—(le)2 (51b)

4

where we ave used (10a-b, 11).

If we now recall the definition of B, and y for
the unpolarized case from (8), we may use (51a-b)
to rewrite the off-diagonal element of the spin unpo-
larized density matrix and obtain

. 1 » .
Bae =g (BrEe 2+ Rie 7). (52)

Thus we have already a (complex) equation which
relates the known parameters B, y, B.,, B}, and
r, to the remaining unknown phase angles y* and »*
so that one may hope to avoid the somewhat tedious
determination of Dy;, and & in the present case.

This is, however, only partially correct. Figure 1
illustrates the addition of the two right hand terms
of (52), abbreviated as {* and (%, to give {= B, e~ 21",
As one can see, two solutions are possible for y* and
7. Even with this ambiguity it may sometimes be very
worthwhile to evaluate the two alternative sets of y'
and y° for comparison with theory. A final decision
of which set is correct requires either the determina-
tion of J, as discussed in the previous section, or some
other experiment to distinguish between the alternate
solutions for y* and v*.

It should be noted that the situation discussed
here is quite similar to that encountered in a s —d
heavy particle impact excitation without spin analysis
as discussed by Andersen et al. [30, 31].
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5. Experimental Results

We now apply the results of the preceding sections
to a reevaluation of the experimental data of McClel-
land et al. [11, 12], who presented spin asymmetries
for the collisional deexcitation process defined in ().
We give here only a brief summary of the relevant
experimental details.

A beam of spin-polarized electrons, produced in
a GaAs negative-electron-affinity photoemission
source [32], intersected a beam of sodium atoms pre-
pared in a well defined excited state by laser optical
pumping. The polarization of the electron beam was
typically |B|=0.2640.02 [11, 12]. The intersection of
the two beams defined the center of a horizontal scat-
tering plane, in which rotated a channel electron mul-
tiplier incorporating a retarding field energy analyzer.
This detector rejected all elastically or inelastically
scattered electrons, while allowing detection of the
2.1 eV more energetic superelastically scattered elec-
trons. The optical pumping laser, locked to the
328,,2(F=2)—>3%P,,(F=3) transition in sodium,
was either linearly or circularly polarized to achieve
the desired state preparation of the excited sodium
atoms.

5a. Circularly Polarized Excitation

Figure 2 shows a schematic of the scattering geometry
from [12], displaying the direction of the incident
electron beam (k;), the scattered electrons (k,), and
the electron spin polarization P, which is parallel to
the 2-axis in the natural frame, indicated by R,,(, $.a:
and 2,,,. Notice that the optical pumping light, inci-
dent from above the scattering plane, propagates in

o ey
Zhat: zphomn

Fig. 2. Schematic of the scattering geometry for circularly polarized
optical pumping, showing the orientations of the natural and pho-
ton frames. Electrons of polarization P,=P,2,,, are incident with
momentum k; and scatter into an angle 6,.,, with momentum k.
The laser, with left-handed (LHC) or right-handed (RHC) circular
polarization, is incident along the 2,,, direction. The photon frame
and the natural frame coincide in this case
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the —2,,, direction. We thus take the photon frame
to be such that 2,100 = — 2pa;-

The typical measurement protocol consisted of
modulating the spin of the incident electron beam,
counting the scattered electrons for each spin direc-
tion separately with two gated scalers. For measure-
ments with circularly polarized pumping light, the he-
licity of the optical pumping laser was periodically
reversed so that, in total, four count rates were re-
corded, one for each of the possible combinations of
electron and atom spin directions. A background sig-
nal was recorded with the laser blocked. Series of
such measurements were undertaken as a function
of scattering angle at two fixed incident energies of
2.0 and 9.26 eV, and as a function of incident energy
at a scattering angle of 30°.

The four scattering signals are used to calculate
the three relative quantities I!;, I, and r, as dis-
cussed in Sect. 4b. One first calculates, according to
(33a—d), the intermediate quantities Ty, T-;_1, 1,
and S_,_,, which are the signals one would expect
if one could prepare pure singlet and triplet initial
states. From these, one calculates the relative quanti-
ties according to (34a-b, 35). The results are shown
in Figs. 3 through 5. In all figures, the solid points
are the experimental results with error estimates of
one standard deviation from counting statistics.

For an incident energy of 2.0 eV, corresponding
to an energy of 4.1 eV for the reverse process, i.e.
inelastic scattering from the sodium ground state,
these quantities were measured as a function of scat-
tering angle in the angular range from 10° to 40°,
with the results shown in Fig. 3. As seen in Fig. 3a,
the angular momentum is more effectively transferred
through the triplet than through the singlet scattering
channel. In either case, the angular momentum
transfer peaks at about 35°, perhaps slightly earlier
for singlet than for triplet. The data for the triplet
channel are consistent with complete angular momen-
tum transfer of L, ==1 at a scattering angle of 35°.
Thus excitation of Na(3S) into the 3 P-state by pure
triplet scattering would leave the excited atom in a
fully circular state (M =1). In this range of scattering
angles, the ratio of triplet to singlet scattering, shown
in Fig. 3b, is roughly constant with singlet about 30%
larger. The 4-state close-coupling results of Moores
and Norcross [20], at 4.0 eV, are included, for com-
parison, as the solid solid lines in Fig. 3. As expected,

¢ Note that the scattering amplitudes have been calculated with
respect to the standard collision frame. For our comparison they
are transformed, as discussed in Sect. 34, into the natural frame
[17, 18] by
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Fig. 3a—c. Angular dependence of parameters discussed in the text
at an incident energy of 2.0 eV (superelastic), corresponding to an
inelastic energy of 4.1 eV. Experimental results are a reevaluation
of data from McClelland et al. [12] unless otherwise stated. Theory
is the four-state close-coupling calculation of [20] at 4.0 V. a Trip-
let angular momentum transfer I, (® experiment; theory)
and singlet angular momentum transfer I, (O experiment; ————
theory). b Triplet-singlet ratio r=Q!/Q% (® experiment;
theory). ¢ Angular momentum transferred by unpolarized electrons
L, (e experiment; & experiment of Hermann and Hertel [13] at
30eV; theory). Error bars are one standard deviation derived
from counting statistics

at this incident energy, the close-coupling calculations
agree quite well with the experimental results. It is
interesting to note that while the agreement for the
cross section ratio and for the triplet angular momen-
tum transfer is quite good, the agreement is somewhat
less satisfying for the angular momentum transferred
via the singlet channel.

In Fig. 3c, these spin-polarized measurements
have been averaged to give the angular momentum
transferred in collisions by unpolarized electrons in
order to compare with the earlier measurements of
Hermann et al. [13]. Despite the difference in incident
energy (3 eV vs. 2 eV), the agreement is quite good.

At an incident energy of 9.26 eV, corresponding
to an energy of 11.36 eV for inelastic scattering, the
data, shown in Fig. 4, show somewhat different be-
havior. Figure 4a indicates that the triplet angular
momentum transfer peaks at smaller scattering angle
and has a smaller peak value than at lower energy.
Though the data for the singlet L, have more scatter,
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Fig. 4a and b. Angular dependence of parameters discussed in the
text at an incident energy of 9.26 eV (superelastic), corresponding
to an inelastic energy of 11.36 eV, Experimental results are a reeva-
luation of data from McClelland et al. [12]. Theory is the distorted-
wave polarized-orbital calculation of [21] at 12.1 eV. a Triplet angu-
lar momentum transfer L!, (® experiment; theory), and singlet
angular momentum transfer I, (O experiment; ——- theory). b Trip-
let-singlet ratio r=Q’/Q5 (® experiment; theory). Error bars
are one standard deviation from counting statistics
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Fig. 5a and b. Energy dependence of parameters discussed in the
text at a scattering angle 6,.,,=30°. Energy is superelastic incident
energy, so 2.1 ¢V must be added for comparison with inelastic re-
sults. Experimental results are a reevaluation of data from McClel-
land et al. [12]. Theory is four-state close-coupling of [20] up to
29 eV, and distorted-wave polarized-orbital of [21] thereafter. a
Triplet angular momentum transfer I, (® experiment; theory)
and singlet angular momentum transfer I3, (O experiment; ————
theory). b Triplet-singlet ratio r=Q'/Q% (® experiment;
theory). Error bars are one standard deviation from counting statis-
tics

there is indication that the transfer efficiency may
peak at an angle larger than 40°. In Fig. 4b, we see
that the relative strengths of singlet and triplet scatter-
ing are about equal at small angles, up to about 25°,
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with triplet dominating at larger angles. At this ener-
gy, the experimental data are compared with the re-
sults of a distorted-wave polarized-orbital (DWPO)
calculation at 12.1eV by Kennedy et al. [21], in-
cluded in Fig. 4 as the dashed lines. While this theory
agrees reasonably with I, and with L, small angles,
it does so at the expense of completely missing the
overall trend toward triplet dominant scattering as
the scattering angle increases.

At one scattering angle, 30°, experimental data
are available as a function of incident energy from
1.3 eV to 12eV, with the results shown in Fig. 5.
Again, angular momentum is tranferred more effi-
ciently via the triplet than the singlet scattering. The
triplet L, has a broad maximum around 3 eV, then
decreases slowly with increasing energy. The singlet
L, appears roughly independent of energy in this en-
ergy range. The triplet to singlet cross section ratio
shows roughly a monotonic increase with incident
energy. Also shown in Fig. 5 are results from both
close-coupling [20] (solid lines) and DWPO [21]
(broken lines) at a few specific energies marked by
the crosses. The close coupling results are in quite
good agreement for L, and for the triplet to singlet
ratio, with significantly larger discrepancy for If, . The
apparent tendency of the close coupling results to
show poorer agreement for the singlet angular mo-
mentum is not understood at present. As for the
9.26 eV case, the DWPO calculation shows reason-
able agreement strengths of singlet and triplet scatter-
ing as well as the overall energy dependence for I, ,
which is the dominating term.

A different way of thinking about these results
is in terms of direct and exchange scattering, the cor-
responding amplitudes being the difference and sum
of singlet and triplet scattering amplitudes. Since the
presently discussed experiment cannot determine the
relative phase between singlet and triplet scattering
amplitudes, a quantitative evaluation in terms of di-
rect and exchange scattering is not possible. One may,
however, note that exchange could only be small
when singlet and triplet scattering amplitudes are of
the same magnitude. Thus our finding of a large cross
section ratio Qp/Qf>1 indicates a substantial ex-
change contribution to the scattering. This appears
surprising at an energy about twice the ionization
threshold and at not too large scattering angles. The
DWPO calculations also indicate a large exchange
contribution (Q6/Q% < 1), however with a completely
wrong phase factor.

5b. Linearly Polarized Light

As discussed in Sect. 4¢, no new information can be
obtained from studies with linearly polarized excita-
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Fig. 6. Schematic of the scattering geometry for linearly polarized
optical pumping, showing the orientations of the natural and pho-
ton frames. Electrons of polarization P,=P,2,,, are incident with
momentum k; and scatter into an angle ., with momentum k;.
The laser is incident along 2,,,. The electric vector E of the laser
light, which determines the direction of 2,0, Mmakes an angle §
with respect to the incident electron direction
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tion of the target atom. However, since measurements
with linearly polarized light have been reported and
showed an interesting structure, it is useful to analyze
these data in terms of what has been obtained with
circularly polarized light [12], combined with the spin
unpolarized results [13]. This will provide an interest-
ing consistency check, illuminating what has been dis-
cussed in Sect. 4e. Also, proper definition of the coor-
dinate frames becomes crucial at this point and our
discussion will illustrate some of the subtleties which
enter in the more general type of geometry discussed
in Sect. 4d.

Figure 6 shows the geometry as defined by the
primary beam (k;), scattered electrons (k,) and the
electric vector E of the laser, which defines the 2,400
axis. Notice that the experimental polarization angle,
B, of the electric vector E is measured with respect
to the laboratory fixed axis k;. Thus, the azimuthal
angle of 2., With respect to the natural frame, as
defined in Fig. 8 is given by ¢ =7 + 8., — . Measure-
ments were also reported in [11] at “negative” scat-
tering angles. In our present description, however,
where %,,, and §,,, are always defined with respect
to k; and k., scattering angles are always “positive”.
We account for the “negative” angles by writing ¢
=10,..| F B, where “ F ” refers to the “positive” and
“negative” scattering angles of [11]. Equation (40)
for the spin asymmetry then becomes

54L,

A=+ — .
- 7+3Rm Cos 2(|oscal|+ﬂ—v)

(53)

The overall “ F” sign accounts for the fact that, in
the experiment, the spin polarization P, is always de-
fined with respect to the same laboratory fixed frame,
while the 2,,,, axis reverses direction for the “negative”
angles.
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Fig. 7a and b. Spin asymmetry for superelastic scattering with linear-
ly polarized optical pumping. The incident energy is 10.0eV. a
Asymmetry at a scattering angle 6,.,,=30° vs. the angle 8 which
the electric vector of the laser light makes with respect to the inci-
dent electron direction (see Fig. 6) (@ experimental data from [11],
theory as discussed in Sect. 5b). b Asymmetry vs. scattering
angle with f=0°. (® experimental data from [11], A and v experi-
mental data from [12], reprocessed as discussed in Sect. 5b)

Two types of measurements of the spin asym-
metry, A, were performed. First, at a fixed scattering
angle of 6,.,,=30°, 4 was measured as a function of
p. Next, at a fixed linear polarizer angle of =0, 4
was measured as a function of 6,,,. Figures 7a and
7b reproduce the experimental results of [11], adopt-
ing our present notations. As a consistency check,
we also show analogous quantities derived from
quantities measured with linearly polarized light with-
out spin analysis [13] and from the previously dis-
cussed results circular polarization studies with spin
analysis [12].

This comparison between the different types of
experiments was made using the following procedure.
First, notice that at a given scattering angle 6,,, one
may obtain an estimate for AL, from the spin asym-
metry 4 averaged over §:

AL, ~(AD, 3. (54)

From Fig. 7a one obtains AL, =0.164 at 6., =30°,
while from the circularly polarized studies we find
r=22, 5, =035, and I, =0.70, as taken from Figs.
4a and 4b. With (39), this gives AL, =0.156 which
indicate quite reasonable consistency between the two
measurements, well within the limits of error.

Also from the circularly polarized data we can
derive Bi,=0.71 and E;,=0.94. With this and (52) we
get an upper bound to for B, of 0.74 by assuming
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equality of the phases y* and y*. B, as well as y have
been determined previously [13], unfortunately only
up to 0., =20°. An “educated guess” (based on the
results electron scattering from H and He [1]) allows
us to extrapolate these data to B;,(30°)~0.75+0.1
and y(30°)~ —60° 1 10°. For consistency we thus use
the values AL, =0.156 and B;,=0.74 derived from
the circular polarization data together with y=60°
to evaluate (53) as a function of B. The result is the
solid line in Fig. 7a, which shows reasonable con-
sistancy of all the data.

In a similar manner we have reanalyzed the circu-
lar polarization data [12] at different scattering an-
gles (using “educated guesses” for y where measure-
ments are not available) to derive linearly polarized
asymmetries, shown as the open symbols in Fig. 7b.
Again we have used upper bounds for B, derived
from the circular data, which agree well with pre-
viously measured values for B, [13] where available
(e.g., the upper bound is 0.96 and 0.92 for 6, = 10°
and 20°, while the earlier values reported for B, are
0.89 and 0.86+0.1 respectively [13]). Since the spin
asymmetry is antisymmetric in scattering angle for
B=0°, the reanalyzed data of [12], represented by
the symbols A, have been folded over to “negative
angles” to give the points represented by the symbols
V. As seen in Fig. 7b the linear polarization data [11]
show a nice consistency with the recalculated data
from the circularly polarized experiment [12].

6. Conclusions

To summarize, we have extended the density matrix
formalism used to describe electron impact induced
np<n's atomic transitions to include explicitly the
effects of electron spin exchange. A general expression
(24) for the scattering intensity was found which sepa-
rates very clearly the dynamics of electron scattering
from the geometric details of the initial state prepara-
tion and experimental geometry. Specific experiments
were discussed which together can completely deter-
mine all of the complex scattering amplitudes describ-
ing this process except one phase difference between
singlet and triplet amplitudes, and, of course, the over-
all arbitrary phase. For purposes of illustration, the
experimental data of [11, 12] were recast in the form
detailed in the present work and compared with the
results of ab initio scattering calculations [20, 21].
At lower energies, about 2.0 €V, the 4-state close-cou-
pling calculation [20] was found generally to be in
quite reasonable agreement with the experiment. At
higher energies, around 10.0 eV, the DWPO [21] was
found to miss many of the essential details of the
scattering process.
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A complete characterization of this scattering pro-
cess still requires a determination of the relative phase
difference (6%, discussed in Sect. 4¢) between singlet
and triplet scattering. That requires a detailed analy-
sis, analogous to that given in the present work, of
experiments employing both preparation of the initial
state and analysis of the final state. The relevant ex-
perimental data is not, at present, available, and that
analysis is left for the future.

Appendix

In this appendix we discuss how the matrix elements
0m, My Of the natural frame atomic preparation matrix
(expressed in the |JM,) basis) are obtained from a
description, in the photon frame, of the atom prepared
in a single hyperfine state. The formalism used here
is discussed in several textbooks and articles, notably
Brink and Satchler [33], Edmonds [34], Fano and
Racah [35], Macek and Hertel [16], Hertel and Stoll
[3], or Fischer and Hertel [27]. We take as the start-
ing point of our derivation the density matrix ele-
ments ¢y, 5y in the [FM ) basis, given in the photon
frame. We then construct multipole moments out of
these, and project these moments onto the [JM,) ba-
sis. Rotation into the natural frame is then performed,
and real multipole moments are made from the com-
plex ones. Finally, the elements gy, ,, are extracted
from these real multipole moments in the natural
frame.

The multipole moments used in the present treat-
ment are those constructed from angular momentum
operators, and are referred to with the symbol S§(F).
These multipoles are equivalent to the {T}(ph)) of
Hertel and Stoll [3] and are related to the density
matrix elements via the relations

1
Z (_I)K—F—MF

v®(F) Mo
(KQ|F—Mp FM}> 0y, p1is (Ala)

O'MFM'F=UK(F) 2 (— 1)F_K+MF
QK

-(F — My FM|KQ) SG(F), (Alb)

Sg(F)=

where v¥(F) is the ratio of the state multipoles to
the multipole moments, and is given by

2KQK +1)*

j— E2

(‘1)2j[(2j+1<+1)!

with j=F in our case. The multipole moments S§(F)
can be projected onto the |JM,)> basis as outlined
in [27]:
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v*(F)

J J I (_1)F+J—I+Kle((F).

(A3)

Now we must rotate into the natural frame, which
is accomplished with rotation matrices D§.o(xBy), as
defined in [33]:

S§(nat)=Y" SX (photon) D§.o(xBy), A9
o

where o,  and y are the Euler angles used in rotating
the photon frame axes into the natural frame axes.
The natural frame multipole moments are then con-
verted to real multipole moments S¥. (nat), S&+ (nat),
and S§_ (nat) by the relations

S&.+ (nat)= SX(nat), (A5a)
S+ (nat)= % [S% o (nat)+( — 1) 25§ (nat)
+(—1) QSg(nat)], (A5b)

S§- (nat)= 1—/% [S% o(nat)—(— 1) 25X (nat)]. (A5¢)

The final step is to express the matrix elements
Oum, My 10 terms of the natural frame real multipole
moments given in (A Sa-c). This is done with (A 1b),
replacing F with J, and using (A 5a—c) when neces-
sary. The resulting explicit expressions for the ele-
ments of 6, », are given below. We write down only
the 10 elements of the upper right half of the 4 x 4
matrix, as the rest can be obtained from the fact that
the matrix is Hermitian. Note that the multipole mo-
ments in these expressions are in the natural frame,
although we drop the “(nat)” designation to simplify
the notation.

13 1, S
0%’%_Z+1_OSO++T§SO++%SO+’ (A6a)
l/f; 1 ;o1 P : Q2
a%,%=—E(S1+—lS1__)+E(S -—iS1-)
1
+—= (51, —is}.), (A6b)
45)/2
1 1
%t TS RS, (A6
1
03 3 =———(83,—iS3_), (A6d)
5 3 91/5 3+ 3
1 1 1 1
s =gt Sy She—3g St (A6

1 1_7/3 .
o, -1 =g(si+—is;_)—E]@(sL—zsi_), (A60)
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03 = (S —iSh )~ (s}, ~iS1), (A6
2273 12 18V§ ’

1 1 1 1 .
0—%,—§=Z—ES(1)+—1—2“S(Z)++%SS+> (A6h)
o =Vt _ist )~ Lis2, _is2)

73 10 1+ 1- 12 14 1-
1
e (S2, —iS3_), A6i
451/5 1+ 1 ( )
13, 1, .
0—%,—%—2_1—0S0++Tiso+—%30+ (A6))

(note that we have used the fact that $9, =1 and
> 0um,um,=1in the above).
M,

Let us discuss how the relations outlined in this
Appendix might actually be used in practice. If, as
is often the case, the optical pumping is performed
with pure linear or circular polarization, the density
matrix 6y, ;. becomes diagonal in the photon frame
[27]. Then from (A 1a) we see that the only nonzero
multipole moments are those with Q=0. The opti-
cally pumped atom can then be described in the
|JM, basis by only three parameters (recall J =3/2,
50 Kpax=3):

S8())=00(J) (orientation), (A7a)
S5())=ae(J) (alignment), (A7b)
S3(J)=ex(J) (octopole moment). (A7¢)

Furthermore, if steady state conditions are reached,
circular polarization results in the |[FM > density ma-
trix element o; ; (for left-handed polarization) or
03, -3 (for right-handed polarization) being equal to
unity while all other elements are zero. This leads
to the values

0o(J)= £3/2, (A8a)
ag(J)=3, (A8D)
Ceo(N)=19/2. (A8¢)

where the + is for left-handed polarization and the
— is for right-handed polarization. Steady state
pumping with linearly polarized light creates the
values 0y =37, 0y,=0_; ;=7 and o,,
=0_,, _,=43 [3, 27], and all other elements equal
to zero. This results in

00=0 (A9a)
ag=—2, (A9b)
e, =0. (A9c)
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In principle, the numbers o4, @, and e, can be mea-
sured without too much difficulty, so the values in
(A 8) and (A 9) could be corrected to reflect real condi-
tions if necessary. However for practical purposes at
not too high atom beam densities (< 10*° cm ~3), well
collimated beams, low magnetic fields (<5 mg), and
not too high laser intensities (<100 mW/cm?), one
may safely assume stationary conditions.

Having only Q =0 muitipoles in the photon frame
allows the rotation into the natural frame to be car-
ried out very simply, because the rotation matrices
D§o(xfy) can be expressed in terms of modified
spherical harmonics Cgp. The resulting expressions
for the real multipole moments in the natural frame
are

SX(nat) =SX(photon) Cy,(0, ), (A10a)

S . (nat)= SX (photon) (— 1)2|/2 Re[Cxo (6, )],
(A10b)

SK(nat) = S&(photon) (—1)2]/2 Im[Cyo (6, 9)],
(A10¢)

where, as shown in Fig. 8, 6 and ¢ are the polar angles
describing the direction of 2,0, With respect to 2,,,.
Thus if pure linear or circular polarization is used
and steady state conditions exist, one need only take
the values given in (A 8a-c) or (A9a—c), rotate these
with (A 10a—) and insert the results into (A 6 a—j). This
is the procedure used in Sect. 4. Usually some care
is advisable when defining the angles 6 and ¢ and
the exact orientation of the natural reference frame,
as discussed in Sect. 3a. A detailed discussion of an
example is given in Sect. 5b.

In the most general case, when, for example, ellipt-
ically polarized light is used and/or non-steady-state
conditions exist, the most practical approach would
probably be to perform an ab initio calculation of
the density matrix elements gy, ;. Then (A1-A6)
would have to be used in their most general form.

=iphc.ton

/ ynat

\&nat

—_

Fig. 8. Definition of the angles § and ¢ describing the direction
of 2,p010n With respect to the natural frame
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Rather complicated expressions for the eclements
O, my Would most likely arise, but in principle their
application to the problem would be straightforward.
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